LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - NOVEMBER 2011
MT 3102 - MATHEMATICS FOR PHYSICS

Date :09-11-11
Dept. No. \square Max. : 100 Marks

PART - A

Answer ALL questions.

1. If $y=\sin (a x+b)$, find y_{n}.
2. Find the slope of the curve $r=e^{\theta}$ at $\theta=0$.
3. Prove that $\frac{e-1}{e+1}=\frac{\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots \ldots \infty}{\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\ldots \ldots \infty}$.
4. Find the rank of the matrix $\left(\begin{array}{cccc}3 & -1 & 2 & 4 \\ -6 & 2 & -4 & -8 \\ -3 & 1 & -2 & -4\end{array}\right)$.
5. Find $L(\sin a t)$.
6. Find $L^{-1}\left[\frac{1}{s(s+a)}\right]$.
7. Write down the expansion for $\sin n \theta$.
8. Show that $\cosh ^{2} x-\sinh ^{2} x=1$.
9. What is the chance that the leap year selected at random will contain 53 Sundays?
10. If a Poisson variate X is such that $P(X=1)=2 P(X=2)$, find the mean.

PART - B

Answer any FIVE questions

11. Find the $\mathrm{n}^{\text {th }}$ differential of $e^{4 x} \sin ^{2} x$.
12. Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
13. Sum the series $\frac{1^{2}}{1!}+\frac{1^{2}+2^{2}}{2!}+\frac{1^{2}+2^{2}+3^{2}}{3!}+\ldots \ldots . \frac{1^{2}+2^{2}+3^{2}+\ldots+n^{2}}{n!}+\ldots$.
14. Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$.
15. Find $L^{-1}\left[\frac{1}{(s+1)\left(s^{2}+2 s+2\right)}\right]$.
16. Express $\frac{\sin 6 \theta}{\sin \theta}$ in terms of $\cos \theta$.
17. If $\tan (x+i y)=u+i v$, prove that $\frac{u}{v}=\frac{\sin 2 x}{\sinh 2 y}$.
18. An insurance company insures 4,000 people against loss of both eyes in a car accident. Based on previous data, the rates were computed on the assumption that on the average 10 persons in $1,00,000$ will have car accident each year that result in this type of injury. What is the probably that more than 3 of the insured will collect on their policy in a given year?

PART - C

Answer any TWO questions.
19. (a) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$, prove that $\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
(b) Find the maxima and minima of the function $2 x^{3}-3 x^{2}-36 x+10$.
20. (a) Find the sum to infinity of the series $\frac{1}{24}-\frac{1 \cdot 3}{24 \cdot 32}+\frac{1 \cdot 3 \cdot 5}{24 \cdot 32 \cdot 40}-\ldots$.
(b) Find the eigen values and eigen vectors of $\left[\begin{array}{ccc}3 & -1 & 3 \\ -1 & 5 & 1 \\ 3 & 1 & 5\end{array}\right]$
(8 marks)
21. (a) Expand $\sin ^{3} \theta \cos ^{3} \theta$ in a series of sines of multiples of θ.
(b) Evaluvate $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{\sin ^{3} x}$.
22. (a) Solve the equation $\frac{d^{2} y}{d t^{2}}-10 \frac{d y}{d t}+24 y=24 t$ given that $y=\frac{d y}{d t}=0$ when $x=0 . \quad$. 12 marks)
(b) Find the mean and standard deviation for the following frequency distribution:

x	1	2	3	4	5	6	7
f	5	9	12	17	14	10	6

(8 marks)

\$\$\$\$\$\$

